1-(3,5-dichlorophenyl)-3-[2-(2-furanylmethylthio)ethyl]urea is a synthetic compound that has shown potential in research, particularly in the field of **pharmacology**.
**Here's a breakdown of the compound and its significance:**
**Structure:**
* **1-(3,5-dichlorophenyl)-3-[2-(2-furanylmethylthio)ethyl]urea** is a relatively complex organic molecule.
* It contains a urea functional group (NH-CO-NH) connected to a 3,5-dichlorophenyl ring on one side and a 2-(2-furanylmethylthio)ethyl chain on the other.
* The furanylmethylthio group adds another layer of complexity and potential for biological activity.
**Potential Applications:**
Research has focused on this compound for its potential as:
* **Antifungal Agent:** Studies have shown that 1-(3,5-dichlorophenyl)-3-[2-(2-furanylmethylthio)ethyl]urea exhibits significant antifungal activity against various fungal species. This could be crucial for developing new treatments for fungal infections.
* **Anti-inflammatory Agent:** Some research suggests that the compound possesses anti-inflammatory properties, possibly due to its ability to modulate certain inflammatory pathways.
* **Potential for Other Applications:** The specific structure of this compound makes it a promising starting point for developing other bioactive molecules. Researchers may be able to modify it to create new drugs with different therapeutic targets.
**Why is it important for research?**
* **Novel Structure:** The unique combination of functional groups in this compound offers a new platform for developing novel drug candidates.
* **Potential for Therapeutic Benefit:** The antifungal and anti-inflammatory properties suggest potential applications for treating a range of conditions.
* **Understanding of Biological Mechanisms:** Research on this compound can help scientists better understand the mechanisms underlying fungal infections, inflammation, and other biological processes.
**Important Note:** It is crucial to remember that research on this compound is still ongoing. More studies are needed to confirm its efficacy, safety, and potential clinical applications.
**Further Research:**
* **Mechanism of Action:** Further research should investigate how this compound interacts with specific biological targets to exert its antifungal and anti-inflammatory effects.
* **Toxicity and Safety:** Thorough studies are essential to determine the compound's toxicity profile and potential side effects in humans.
* **Optimization and Development:** Researchers may explore modifications to the structure of this compound to enhance its activity, reduce toxicity, and improve its pharmacological properties.
In conclusion, 1-(3,5-dichlorophenyl)-3-[2-(2-furanylmethylthio)ethyl]urea is a promising candidate for pharmaceutical research due to its unique structure, potential biological activity, and potential for development into new therapeutic agents.
ID Source | ID |
---|---|
PubMed CID | 2823304 |
CHEMBL ID | 1575610 |
CHEBI ID | 120459 |
SCHEMBL ID | 22103920 |
Synonym |
---|
n-(3,5-dichlorophenyl)-n'-{2-[(2-furylmethyl)thio]ethyl}urea |
MLS000860887 |
smr000459671 |
MAYBRIDGE1_005111 |
CHEBI:120459 |
1-(3,5-dichlorophenyl)-3-[2-(furan-2-ylmethylsulfanyl)ethyl]urea |
HMS556A07 |
HMS2781A07 |
CHEMBL1575610 |
bio5d5 |
1-(3,5-dichlorophenyl)-3-[2-(2-furanylmethylthio)ethyl]urea |
Q27208303 |
SCHEMBL22103920 |
Class | Description |
---|---|
ureas | |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, Beta-lactamase | Escherichia coli K-12 | Potency | 10.0000 | 0.0447 | 17.8581 | 100.0000 | AID485341 |
Luciferase | Photinus pyralis (common eastern firefly) | Potency | 26.8545 | 0.0072 | 15.7588 | 89.3584 | AID588342 |
glp-1 receptor, partial | Homo sapiens (human) | Potency | 28.1838 | 0.0184 | 6.8060 | 14.1254 | AID624417 |
thioredoxin reductase | Rattus norvegicus (Norway rat) | Potency | 79.4328 | 0.1000 | 20.8793 | 79.4328 | AID588453 |
TDP1 protein | Homo sapiens (human) | Potency | 29.0929 | 0.0008 | 11.3822 | 44.6684 | AID686978 |
Microtubule-associated protein tau | Homo sapiens (human) | Potency | 25.1189 | 0.1800 | 13.5574 | 39.8107 | AID1468 |
Smad3 | Homo sapiens (human) | Potency | 10.0000 | 0.0052 | 7.8098 | 29.0929 | AID588855 |
PINK1 | Homo sapiens (human) | Potency | 50.1187 | 2.8184 | 18.8959 | 44.6684 | AID624263 |
nonstructural protein 1 | Influenza A virus (A/WSN/1933(H1N1)) | Potency | 19.9526 | 0.2818 | 9.7212 | 35.4813 | AID2326 |
Parkin | Homo sapiens (human) | Potency | 50.1187 | 0.8199 | 14.8306 | 44.6684 | AID624263 |
nuclear factor erythroid 2-related factor 2 isoform 2 | Homo sapiens (human) | Potency | 29.0929 | 0.0041 | 9.9848 | 25.9290 | AID504444 |
parathyroid hormone/parathyroid hormone-related peptide receptor precursor | Homo sapiens (human) | Potency | 50.1187 | 3.5481 | 19.5427 | 44.6684 | AID743266 |
importin subunit beta-1 isoform 1 | Homo sapiens (human) | Potency | 31.6228 | 5.8048 | 36.1306 | 65.1308 | AID540263 |
snurportin-1 | Homo sapiens (human) | Potency | 31.6228 | 5.8048 | 36.1306 | 65.1308 | AID540263 |
DNA polymerase iota isoform a (long) | Homo sapiens (human) | Potency | 44.6684 | 0.0501 | 27.0736 | 89.1251 | AID588590 |
nuclear receptor ROR-gamma isoform 1 | Mus musculus (house mouse) | Potency | 17.7828 | 0.0079 | 8.2332 | 1,122.0200 | AID2551 |
geminin | Homo sapiens (human) | Potency | 26.1011 | 0.0046 | 11.3741 | 33.4983 | AID624296; AID624297 |
Guanine nucleotide-binding protein G | Homo sapiens (human) | Potency | 44.6684 | 1.9953 | 25.5327 | 50.1187 | AID624288 |
TAR DNA-binding protein 43 | Homo sapiens (human) | Potency | 7.0795 | 1.7783 | 16.2081 | 35.4813 | AID652104 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Process | via Protein(s) | Taxonomy |
---|---|---|
plasma membrane | Guanine nucleotide-binding protein G | Homo sapiens (human) |
intracellular non-membrane-bounded organelle | TAR DNA-binding protein 43 | Homo sapiens (human) |
nucleus | TAR DNA-binding protein 43 | Homo sapiens (human) |
nucleoplasm | TAR DNA-binding protein 43 | Homo sapiens (human) |
perichromatin fibrils | TAR DNA-binding protein 43 | Homo sapiens (human) |
mitochondrion | TAR DNA-binding protein 43 | Homo sapiens (human) |
cytoplasmic stress granule | TAR DNA-binding protein 43 | Homo sapiens (human) |
nuclear speck | TAR DNA-binding protein 43 | Homo sapiens (human) |
interchromatin granule | TAR DNA-binding protein 43 | Homo sapiens (human) |
nucleoplasm | TAR DNA-binding protein 43 | Homo sapiens (human) |
chromatin | TAR DNA-binding protein 43 | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |